Scientific journal
Balanced diet, nutritional supplements and biostimulants
ISSN 2414-1054

FLUORIDE IN NATURAL WATERS OF THE OKA-DON LOWLAND AND ITS IMPACT ON PUBLIC HEALTH

Anichkina N.V. 1
1 Lipetsk State Pedagogical University
A study of the fluorine content in the natural waters of the Oka-Don lowland was held. Analysis of precipitation revealed a fluorine content of 0.05-0.20 mg / L. A high concentration of fluoride was determined in the precipitation in industrial systems and samples of cumulative snow along the roads up to 20-140 meters of width. The fluorine content in the river water is low, but an increase is observed up to 1 mg/L in the region of wastewater treatment plants. The balance between the input and output of fluoride in the study area is 0.7-0.8, that indicates a fixation of fluoride by solid phase component of the landscape. The relationships between the chemical composition of natural waters and the health of the population was studied. A connection of 36 diseases with the fluorine content in the environment was determined.
natural water
fluorine
morbidity
linear correlation
nonlinear correlation
landscapes.

Актуальность темы

Двадцатый век принес понимание биологической роли химических элементов входящих в состав живого вещества. В.И. Вернадский отмечал, что организмы неразрывно связаны с химизмом окружающей среды и с геохимической точки зрения представляют определенную форму миграции химических элементов на поверхности нашей планеты [6]. В процессе жизнедеятельности организмы избирательно поглощают из окружающей среды необходимые для них химические элементы. Однако перераспределение зависит не только от биологических особенностей организмов, но и от геохимических особенностей среды их обитания [10]. Дефицит или избыток содержания в ней отдельных элементов должен вызывать соответствующий физиологический резонанс в организмах [5]. Влияние геохимических особенностей ландшафта на здоровье населения очень разнообразно. Из объектов внешней среды, с которыми у человека и животных существуют прямые связи, проявляющиеся при возникновении эндемий, прежде всего, являются природные воды. Их характеристики достаточно полно отражают экологическую ситуацию территории водосборного бассейна.

Интерес к изучению биогеохимии фтора мне привил во время учёбы в университете, профессор Голубев Игорь Михайлович. Фтор – сильнейший окислитель, имеет наименьший радиус атома из всех известных элементов. В свободном виде не встречается. В настоящее время известно более 100 фторсодержащих минералов. Обладает в силу своих химических свойств высокой биологической активностью [11]. Основным фактором, определяющим уровень потребления фтора человеком, является его концентрация в питьевой воде.

В атмосферу фтор поступает с продуктами вулканических извержений, дымами пожаров, океаническими аэрозолями. Около 10% воды, поступившей в атмосферу, переносится на сушу. Можно предположить, что одновременно переносится пропорциональное количество фтора в океанических аэрозолях [10].

В поверхностных водах фтор, выщелачивающий из горных пород, почв, свободно мигрирует. Реки содержат его n?10-4 – n?10-5 г/л. Коэффициент водной миграции равен 1. Миграционная способность фтора в зоне гипергенеза высокая, соответствует миграции легко и энергично выносимых элементов [10].

Содержание фтора в поверхностных водах суши, как правило, невелики. Впервые изучение содержания фтора в природных водах на территории Советского Союза было проведено по инициативе профессора С.В. Моисеева в 1935 году. Первые данные по содержанию фтора в подземных водах получены в СССР по анализу водоносных горизонтов территории Кольского полуострова в районе г. Кировска [16]. C 1949 года изучение содержания фтора в природных водах начал проводить НИИ имени Ф.Ф. Эрисмана.

Среднее содержание фтора в почвах несколько ниже, чем в литосфере. Повышенное содержание фтора в почвах наблюдается имеет место в районов вулканизма, в районах фосфоритовых залежей, фтор вносится в почву с удобрениями, фторсодержащими инсектофунгицидами. Также существует опасность техногенного загрязнения почв в местах развитой металлургической промышленности, производства пластмасс, вдоль автомобильных дорог. Поступающий в почву фтор вызывает существенное изменение химических свойств почв [12].

Среднее содержание фтора в различных органах растений колеблется от 0,1 до 5 мг/кг сухого вещества [12]. Однако во многих случаях оно может уменьшаться практически до нуля или увеличиваться до нескольких сот миллиграммов. Коэффициент биологического поглощения растительностью суши равен 0,097. Ежедневно ею в круговорот захватывается 6?105 тонн фтора; суммарное количество фтора в фитомассе континентов равно 8,8?106 тонн. [10]

Фтор в организм человека поступает в основном с водой и пищей, суточная потребность взрослого человека 2-3 мг в сутки. Наиболее распространено мнение, что фтор, входящий в состав зубной эмали, снижает растворимость ее в кислотах, а также подавляет активность ферментов ротовой полости, которые вырабатывают кислоту. Содержание фтора, как в различных частях зуба, так и в отдельных зубах колеблется в определенных пределах [15]. Содержание фтора в различных участках одного и того же зуба варьирует от 50 до 560 мг/кг.

В повышенных содержаниях фтор блокирует активные центры ферментов, содержащие ионы Mg2+, Ca2+, Fe2+. Это приводит к ингибированию ферментативных процессов. Во многих биохимических процессах фтор выступает ингибитором: в обмене углеводов и жиров, блокируя ферменты цитохрома С, угнетает тканевое дыхание, снижая активность костной фосфотазы, нарушает процесс оссификации в костях. При этом наступает снижение кальция в сыворотке крови, уменьшается ее бактерицидность и наступают клинические изменения костей и зубов [11, 15].

В 1970 году Всемирная организация здравоохранения выдвинула рекомендации по применению соединений фтора терапевтической целью при остеопорозе и остеомаляции.

Вопрос о повсеместном фторировании воды был включен в качестве специального пункта в программу XXII сессии Всемирной ассамблеи ВОЗ в июне 1969 года и одобрен большинством ее участников. Но до сих пор эта проблема имеет как сторонников, так и противников [14,17]. Мы также считаем, что проблема определения предельно допустимой концентрации фтора в питьевой воде существует [8].

Постановка проблемы исследования

Районом наших исследований является территория Окско-Донской низменности в пределах Тамбовской области. По заключению отдела Главной экологической экспертизы уже в 1995 году экологическая ситуация на данной территории оценена, как напряженная [9]. В данном регионе практически все населенные пункты используют для питьевого водоснабжения подземные воды.

Цель исследования – определение содержания, распределения и миграции фтора и других элементов в природных водах Окско-Донской низменности и влияния их на здоровье населения

Достижение цели предполагало решение следующих задач:

1. Установить уровни концентрации фтора во всех типах природных вод Окско-Донской низменности (подземные воды, поверхностные воды), а также атмосферных осадках.

2. Изучить сезонные изменения водной миграции фтора и определить годовой баланс фтора на изучаемой территории.

3. Определить соотношения содержания фтора с другими компонентами вод.

4. Выяснить особенности накопления фтора в природной среде вследствие техногенного воздействия.

5. Изучить с помощью биометрических методов связи между уровнем заболеваемости населения и количеством потребляемого фтора.

Объект исследования: природные воды Окско-Донской низменности и здоровье населения Окско-Донской низменности.

Предмет исследования: изучение взаимосвязи между химическим составом природных вод и здоровьем населения.

Материалы и методы исследования

Ландшафтно-геохимические полевые исследования проводились с учетом охвата всей территории Тамбовской области. Пробы воды отбирались из одиночных и централизованных источников водоснабжения (колонки, колодцы, водопроводы, скважины), а также наземных водоемов (реки, озера, пруды, родники). Отбор проб воды и определение химических элементов в наземных водоисточниках проводился в соответствии с «Руководством по химическому анализу поверхностных вод суши». Исследования по изучению содержания и распределения фтора в водах Окско-Донской низменности выполнялись в соответствии с ГОСТ 4386-81 «Метод определения массовой концентрации фтора потенциометрическим методом с применением фторидного электрода». Аналитические работы выполнены автором в лаборатории МГПУ. Полученные данные обрабатывались методами вариационной статистики. В задачу наших исследований входило изучение нескольких признаков в их взаимной связи, то есть форму, направление и степень корреляционных связей. Критерий достоверности ≥ 1,96 принимался во внимание. Для определения влияния концентрации фтора на уровень заболеваемости населения рассмотрена линейная корреляция между содержанием фтора и 36 классами заболеваний местного населения. Для расчета коэффициента корреляции данные рассчитывалась как средняя взвешенная по районам. В соответствии с этой рекомендацией использован метод – выявление нелинейности связей частоты заболеваний с факторами внешней среды, в данном случае, с компонентами питьевых вод. Для каждой связи Y-X рассчитывались: коэффициент парной корреляции r, его критерий достоверности Tr, корреляционное отношение η (обычно ηY/X), его критерий достоверности tη, показатель линейности связи γ, его критерий достоверности tγ. Связь считается нелинейной при tγ больше 3, а в более точных работах при tγ больше 2,5 и даже при tγ больше 2. При нелинейной связи γ больше, чем r и ηY/X не равно γX/Y. Для выявления экстремумов и их вида – максимум или минимум – использовались графики Y-X (в том числе со скользящей средней). Экстремум подтверждался расчетом коэффициентов корреляции между Y-X до и после экстремума, найденного на графике [13].

Результаты исследования и их обсуждение

Проведенный анализ атмосферных осадков, выявил, что он определяется внутриматериковым положением региона. Содержание фтора невысокое 0,05-0,20 мг/л. Уровни концентрации элементов в атмосферной влаге выше в теплый период года. Зафиксированы высокие концентрации фтора, в осадках, выпавших в пределах техногенных комплексов.

Выявлена повышенная концентрация фтора в образцах кумулятивного снега, отобранного вдоль автомобильных дорог при удалении от них на 20-140 метров, что в дальнейшем приводит к накоплению и устойчивому загрязнению компонентов природных ландшафтов фтором. Повышены концентрации фтора в образцах снега населённых пунктов, отапливаемого преимущественно котельными на твердом топливе.

Анализ проб воды в водах озер выявил невысокую минерализацию и низкую концентрацию в них фтора (до 0,2 мг/л). Выявлено однородное содержание элементов по профилю толщи воды и незначительное повышение концентрации у дна. Сезонные колебания практически отсутствуют.

В речных водах невысокое содержание фтора. Отмечено повышенное его содержание до 1 мг/л в районе сброса очистных сооружений и при некотором удалении ниже по течению, аналогично наблюдается и повышенная концентрация других элементов [2].

Соотношение между выносом и поступлением фтора на территории низменности составляет 0,7-0,8, что свидетельствует о преимущественном закреплении фтора твердофазными компонентами ландшафта [4].

Содержание фтора в водопроводной воде. Подавляющая часть населения потребляет воду из водопроводных систем. Анализ данных содержания фтора в водопроводной воде и на водозаборных узлах выявил различное их соотношение. Так, в водопроводной воде отобранной из кранов квартир, концентрация фтора ниже, чем на водозаборных узлах, по видимому происходит его соосаждение с гидроксидом железа. При работе станций обезжелезивания, а также при пропускании воды через очистные бытовые приборы, содержание фтора также уменьшается в среднем на 17-20%, что расходится с данными приведёнными в «Википедии» [17]. Исследования показали, что водопроводная вода в 67% населенных пунктов – содержит фтора до 0,5 мг/л; в 23% населенных пунктах – 0,5-0,7 мг/л; в 10% – 0,7-1,1 мг/л. Для оценки количества потребляемого фтора с питьевыми водами и влияния его на здоровье населения, проживающего на данной местности, были рассчитаны средневзвешенные величины по районам области [4].

На основании данных, полученных нами при изучении природных вод на территории Окско-Донской низменности, сделана попытка, установить связь между содержанием фтора в природных водах и их химическим составом [3]. Учитывая, что природные воды являются весьма сложной системой, где факторы, способствующие обогащению их фтором переплетаются с факторами, подавляющими растворение фтористых соединений водовмещающих пород; речь, естественно, не может идти не о функциональной связи между концентрацией фтора и концентрацией других ионов. Для установления наличия этой связи и для количественного ее выражения использован метод вычисления коэффициента корреляции. Статистическая обработка данных показала, что фтор прямо коррелирует с магнием, хлором и обратно коррелирует со щелочностью, а с pH, Ca2+, Fe2+, NH4+, SO42- достоверной корреляции не найдено [1].

Взаимосвязь между содержанием фтора и здоровьем населения

Нами была исследована связь частоты 36 заболеваний с содержанием фтора во внешней среде. Получена линейная корреляция 36 классов и форм нозологических заболеваний с 11 отношениями фтора к содержанию других компонентов питьевых вод.

Для выяснения зависимостей (связей) между заболеваемостью (частотой заболеваний) и составом вод (их факторами) был применен метод графиков, расчет линейной и нелинейной корреляции по Р.Ф. Лакину [13]. Во внимание принимались только достоверные коэффициенты с критерием достоверности более 1,96, то есть с вероятностью 0,95 или 95%. Дополнительно для выявления связи применялся третий метод – ландшафтно-картографический. В нем использовались картосхемы распространенности заболеваний по районам Тамбовской области составленные И.М. Голубевым [9], которые сопоставлялись с картосхемами химического состава вод.

Нами не выявлено линейной корреляции частоты онкологических заболеваний с содержанием фтора в водах. Найдена обратная линейная корреляция частоты рака желудка и шейки матки (r = -0,8) с отношением фтор/нитраты (r = -0,65) и суммы всех форм рака с отношением фтор/хлориды (r = -0,53).

Нелинейная корреляция частоты опухолей с содержанием фтора показала 2 максимума частоты опухолей: при содержании фтора (мг/л) около 0,3 (не во всех случаях) и 0,5, а также 2 минимума: при содержании фтора 0,36 (почти во всех случаях) и 0,6-0,7. Для частоты болезней крови и кроветворных органов максимумы наблюдаются при содержании фтора (мг/л) 0,43 и 0,6, а минимумы при 0,53 и 0,68 [7].

Отметим два экстремума, выявленные во всех случаях: максимум при содержании фтора около 0,5 мг/л и минимум при 0,6-0,7 мг/л. Как показали исследования максимум частоты всех болезней соответствует концентрации 0,5 мг/л фтора, а минимум находится при концентрации фтора 0,6-0,7 мг/л.

Линейной корреляции частоты рака с соотношением фтор/кальций в питьевой воде (концентрация фторидов в мг/л, кальция – мг-экв/л) и с отношением F/рН не обнаружено.

Частоты рака желудка легкого, шейки матки, болезней крови и кроветворных органов имеют 2 максимума при отношениях фтор/кальций около 0,08 и 0,15 (рака молочной железы – 0,11 и 0,2) и 2 минимума при величине этого отношения около 0,12-0,13 и 0,18-0,22 (для рака молочной железы второго минимума не выявлено). Максимумы выявлены при отношениях фтор/кальций, когда содержание фтора около 0,5 мг/л и кальция больше или меньше 4 мг-экв/л, то есть это содержание фтора и кальция, при которых заболеваемость максимальна [7]. Для второго минимума содержание фтора около 0,7 мг/л, а кальция около 4 мг-экв/л, то есть это содержания фтора и кальция, при которых заболеваемость минимальна.

Найден максимум частоты рака легкого при отношении фтор/натрий 0,1 и минимум при 0,32. Для первого отношения содержание фтора близко к 0,5 мг/л, натрия – около 5 мг-экв/л. при таком содержании фтора частота рака легкого максимальна, а натрия – минимальна. Для второго отношения содержание фтора выше 0,5 мг/л, а содержание натрия низкое – 1,7 мг-экв/л. Все это косвенно подтверждает максимум частоты заболеваний при содержании фтора 0,5 мг/л.

Рассмотрена корреляция частоты болезней крови и кроветворных органов с отношением железо/фтор. Линейной корреляции с содержанием железа, фтора по отдельности не выявлено.

Нелинейная корреляция показала: максимум частоты болезней крови и кроветворных органов при отношении железо/фтор 1,9 и минимум при 3. Для первого отношения содержание (мг/л) фтора равно 0,43, а железа 0,82. При таком содержании фтора частота болезней крови и кроветворных органов максимальна. Для второго отношения содержание фтора равно 0,58 мг/л, а железа 1,75 мг/л. При таком содержании фтора частота болезней крови и кроветворных органов близка к минимуму. Это является подтверждением максимума и минимума при содержании фтора около 0,5 мг/л и около 0,6 мг/л соответственно.

В связи с выявленной обратной линейной корреляцией между частотой суммы всех форм рака и отношением фториды/хлориды (r = -0,53) рассмотрена нелинейная корреляция с этим отношением. Найдены: максимум частоты всех форм рака при отношении фтор (мг/л/хлориды (мг-экв/л) 1,45 и минимум при 0,85. Для первого отношения содержание фтора равно 0,5 мг/л, при таком содержании фтора частота рака максимальна. Для второго отношения содержание фтора равно 0,36 мг/л, при таком его содержании наблюдается первый минимум частоты рака. Это подтверждает максимум и минимум частоты рака при содержании фтора 0,5 и 0,36 мг/л соответственно.

При анализе статистических расчетов не обнаружено линейной корреляции частоты болезней системы кровообращения с содержанием фтора в воде, кроме прямой умеренной корреляции частоты ревматизма. Выявлена прямая линейная корреляция частоты ревматизма с отношением фтор/хлор (r = +0,31), фтор/рН (r = +0,41), фтор/кальций (r = +0,47), но с отношением фтор/нитраты – обратная (r = -0,8). Исследование нелинейной корреляции обнаружило максимум частоты ревматизма при концентрации фтора в воде около 0,5 мг/л (табл. 44). Это также может объяснить разное влияние фтора при различных его концентрациях.

Выявлена прямая линейная корреляция частоты цереброваскулярной болезни (с гипертонической болезнью (ГБ) и без ГБ) с содержанием фтор/хлор (r = +0,5), цереброваскулярной болезни (с ГБ и без ГБ) с содержанием фтор/хлор (r = +0,5), цереброваскулярной болезни (с ГБ) с отношением фтор/сульфаты(r = +0,42), ИБС (без ГБ) с отношением фтор/нитриты (r = +0,41), инфаркта миокарда – с отношением фтор/нитраты (r = +0,43).

Можно сделать вывод, что частота сердечно сосудистых заболеваний имеет линейную корреляцию не с содержанием фтора (за исключением ревматизма), а с отношениями содержания фтора и других анионов в воде.

Расчеты нелинейной корреляции показывают: максимум частоты болезней системы кровообращения при содержании фтора в воде 0,5-0,58 мг/л и два минимума при 0,3-0,43 (не во всех случаях) и при 0,6-0,68 [2,4]. Так же, как и для опухолевых заболеваний, минимумы при концентрации фтора менее 0,5 мг/л выявлены не во всех случаях, а максимумы при концентрации около 0,5 мг/л и минимум при концентрации фтора 0,6-0,7 мг/л найдены для всех болезней системы кровообращения. Изменения в сердечно-сосудистой системе нелинейно зависят от интервала концентраций фтора, как это отмечено ранее при рассмотрении опухолевых заболеваний.

При рассмотрении нелинейной корреляции частоты болезней системы кровообращения с отношением содержаний фтор/кальций в воде (концентрация фтора в мг/л, кальция – мг-экв./л) найдены 2 максимума частоты болезней при отношениях фтор/кальций 0,06-0,09 (кроме ишемической болезни сердца (ИБС)) и 0,14-0,15 (для ИБС без ГБ 0,17, для цереброваскулярной болезни без ГБ 0,22), а также 2 минимума: при 0,1-0,11 (кроме ИБС с ГБ) и 0,18 (кроме ИБС и цереброваскулярной болезни без ГБ). Несколько иные результаты по инфаркту миокарда: его частота имеет 2 максимума при отношениях фтор/кальций 0,11 и 0,22, а также 2 минимума при 0,07 и 0,16. Представляет интерес второй минимум при отношении фтор/кальций около 0,18. Содержание фтора в этом случае 0,6-0,7 мг/л, при таком содержании фтора частота болезней системы кровообращения минимальна.

Исследованиями И.М. Голубева отмечено влияние натрия на сердечно-сосудистую систему. По Тамбовской области найдена прямая значительная линейная корреляция между частотой ИБС без ГБ при концентрации натрия в питьевой воде. Найден минимум частоты ИБС без ГБ при концентрации натрия в воде 2,4 мг-экв./л (55 мг/л) для некоторых болезней системы кровообращения при 2,8-3,2 мг/экв/л [9].

Нами рассмотрена корреляция между частотой ИБС без ГБ и отношением содержаний фтор/натрий в воде. При рассмотрении нелинейной корреляции найден максимум частоты ИБС без ГБ при отношении фтор (мг/л)/натрий (мг-экв./л 0,075 и минимум при 0,23. Для первого отношения содержание фтора около 0,5 мг/л, натрия 3,3 мг-экв./л, при этих концентрациях частота ИБС без ГБ гораздо выше минимума. Для второго отношения содержание фтора 0,69 мг/л, натрия 2,8 мг-экв./л, при этих концентрациях частота ИБС без ГБ близка к минимальной, что подтверждает предлагаемую ПДК фтора 0,6-0,7 мг/л и натрия.

И.М. Голубевым отмечена прямая линейная корреляция частоты некоторых сердечно-сосудистых болезней со щелочностью воды. Найден минимум их частоты при щелочности около 6 мг-экв./л (около 400 мг/л) [9]. Нами не найдена линейная корреляция частоты болезней системы кровообращения с отношением щелочность/фтор.

Нелинейная корреляция показала максимум частоты всех форм ГБ при отношении щелочность/фтор 12 и минимум при 8. Для первого отношения содержание фтора равно 0,6 мг/л, щелочности 7,7 мг-экв./л. Для второго отношения содержание фтора равно 0,69 мг/л, щелочности 5,7 мг-экв./л.

По Тамбовской области не найдено линейной корреляции частоты болезней костно-мышечной системы с содержанием фтора в питьевой воде. Выявлена прямая линейная корреляция с отношением фториды/нитриты (r = +0,4). Изучение нелинейной корреляции показало, что частота всего класса болезней костно-мышечной системы максимальна при концентрации фтора в воде 0,54 мг/л (рис. 18-22), а остеоартрозов и солевых артопатий – при 0,31 мг/л; в обоих случаях есть минимум при концентрации фтора 0,68 мг/л (табл. 45).

Есть литературные данные об обратной линейной корреляции частоты остеоартрозов и солевых артропатий с отношением кальций/аммоний; найдены два максимума все болезней костно-мышечной системы при концентрации кальция в воде, мг-экв./л, 3,7 и 4,8 и два минимума при 4,2-4,4 и 5,5 [9].

Наши исследования нелинейной корреляции выявило максимум частоты болезней костно-мышечной системы при отношении фтор (мг/г)/кальций (мг-экв./л) 0,09 и минимум при величине этого отношения около 0,14. Для первого отношения содержания фтора равно 0,5 мг/л (при таком содержании частота болезней близка к максимальной), а кальция – 5,5 мг-экв./л (при таком содержании частота болезней дает минимум, но более высокий, чем при содержании кальция 4,2-4,4 мг-экв./л). Для второго отношения содержание фтора равно 0,6-0,7 мг/л (при таком содержании частота болезней минимальна), а кальция 4,2 мг-экв./л (при таком содержании частота болезней имеет более низкий минимум, чем при содержании кальция 5,5 мг-экв./л) (рис. 22-26).

Найдена обратная связь линейной корреляция частоты болезней костно-мышечной системы с рН. Изучение нелинейной корреляции выявило максимум частоты болезней костно-мышечной системы при рН 7,6 и минимум при рН 7,2. Обнаружен максимум частоты болезней костно-мышечной системы при отношении фтор/рН 0,08, а также минимум при 0,07. Для первого отношения содержания фтора около 0,5 мг/л, рН 6,6, для второго соответственно 0,6 и 7,6.

Линейной корреляции частоты болезней костно-мышечной болезни системы с отношением фтор/хлориды при исследовании не выявлено. Обнаружено два максимума частоты болезней при отношении фтор (мг)/хлориды (мг-экв.) 0,4 и 0,85, а также два минимума – при 0,32 и 0,57. Для первого максимума концентрации фтора, мг/л, и хлоридов, мг-экв., соответственно равны 1,03 и 2,55, для второго 0,36 и 0,43 (при таких концентрациях частота болезней выше минимальной). Для первого минимума концентрации фтора и хлоридов соответственно равны 0,7 и 2,18; для второго – 0,76 и 1,31; при таких концентрациях фтора частота болезней минимальна (заметим, что частота болезней костно-мышечной системы максимальна при содержании хлоридов в воде, мг-экв./л – 2,8 и минимальная при 1,8 и 3,7.

Нами не обнаружено линейной корреляции частоты тиреотоксикоза (с зобом и без него) с содержанием фтора и его отношений к содержанию других анионов, но для сахарного диабета найдена одна прямая связь – с содержанием фтора в воде (табл. 46), а также прямая зависимость с отношением фтор/кальций (r = +0,61), фтор/рН (r = +0,37).

Изучение нелинейной корреляции выявило максимум частоты тиреотоксикоза при содержании фтора около 0,37 мг/л и минимум частоты тиреотоксикоза и сахарного диабета при содержании фтора 0,65 мг/л.

Найден максимум частот тиреотоксикоза и сахарного диабета при отношении фтор (мг/л)/кальций (мг-экв./л) 0,11 (для тиреотоксикоза еще при 0,22) и два минимума при 0,09 и 0,14. Для отношения 0,11 содержание фтора около 0,5 мг/л и кальция 4 мг-экв./л, при этих концентрациях частота болезней максимальна. Для первого минимума содержание фтора около 0,6 мг/л, кальция – 6-7 мг-экв/л, для второго – соответственно 0,6 и 4,0.

О влиянии фтора на проявлении болезней органов пищеварения есть данные о выраженных симптомах поражения органов пищеварения у больных флюорозом. При лечении остеопороза высокими дозами фторида натрия 40-100 мг в день у некоторых больных отмечались побочные явления, в первую очередь со стороны желудка и кишечника. Желчно- и мочекаменная болезнь может сопровождаться вторичным гиперфторозом в виду исключительного сродства фтора к кальцию [15].

Нами обнаружена линейная корреляция для гастрита, дуоденита хронического (табл. 47); прямая с отношением фториды/хлориды (r = +0,4) и обратная с отношением фториды/нитраты (r = -0,8).

Найден максимум частоты болезней органов пищеварения при содержании фтора 0,5 мг/л (кроме язвы желудка и 12-перстной кишки); а также два минимума – при 0,31-0,36 мг/л (кроме язвы желудка и 12-перстной кишки) и при 0,61-0,7 мг/л (табл. 47).

Выявлены два максимума частоты болезней органов пищеварения при отношении фтор/кальций 0,06-0,09 и 0,14-0,18, а также два минимума – при 0,11-0,13 и – для язвы желудка, 12-перстной кишки, желчнокаменной болезни, холецистита – при 0,18-0,20. Для первого максимума концентрация фтора 0,24 или 0,5 мг/л, для второго – 0,5 или 1,0 мг/л; при этих концентрациях частота болезней выше минимальной. Для первого минимума концентрация фтора около 0,6 мг/л, для второго – около 0,7 мг/л, то есть подтверждается минимум частоты болезней в зависимости от содержания фтора (рис. 27-30).

Отмечено, что мочекаменная болезнь может сопровождаться вторичным гиперфторозом [15]. Нами обнаружена прямая линейная корреляция частоты нефрита хронического и эрозии шейки матки с содержанием фтора, а также с отношением F/Ca (r = +0,45); Р/рН (r = +0,48); болезней женских половых органов – с отношением фториды/хлориды, F/SO4, F/pH, F/Ca (r = +0,4; +0,4; +0,37; +0,54), болезней мочеполовой системы и болезней женских половых органов – с отношением фториды/сульфаты (r = +0,44); F/pH (r = +0,39); F/Ca (r = +0,52). Выявлена обратная линейная корреляция частоты эрозии матки с отношением фториды/нитриты (r = -0,66) и прямая F/Ca (r = +0,51).

Выявлены два минимума частоты болезней мочеполовой системы населения области при концентрации фтора 0,35-0,43 мг/л (не во всех случаях) и при 0,6-0,7 мг/л в основном. Максимум частоты болезней мочеполовой системы при содержании фтора около 0,5 мг/л подтверждает максимумы частоты ранее рассмотренных болезней. Максимум при содержании фтора около (и ниже) 0,3 мг/л нехарактерен, обнаружен только в двух случаях – цервитита и эрозии шейки матки.

Найдены два максимума частоты болезней мочеполовой системы при отношении фтор/кальций 0,07-0,08 (кроме цервитита и эрозии шейки матки) и 0,12-0,13, а также два минимума – при 0,1 и 0,18 (для второго минимума содержание фтора – около 0,7 мг/л), что подтверждается литературными данными по эндемичному по уролитиазу району Чувашии [9].

Избыточные концентрации фтора могут вызывать изменения со стороны нервной системы, выраженная неврологическая симптоматика наблюдается при флюорозе [15].

Нами не выявлена линейная корреляция частоты рассматриваемых болезней с содержанием фтора в водах. Обнаружена прямая линейная корреляция частоты класса болезней нервной системы и органов чувств с отношением фтор/сульфаты (r = +0,4).

Изучение нелинейной корреляции выявило максимум почти во всех случаях при содержании фтора 0,55 мг/л и минимум во всех случаях при 0,6-0,68 мг/л (так же, как для прочих классов болезней), минимум при 0,27 мг/л отмечен только для заболеваний нервных корешков и сплетений.

Нами не выявлено линейной корреляции частоты гипертрофии миндалин и аденоидов с содержанием фтора в питьевых водах (табл. 50), но найдена прямая линейная корреляция с отношениями фтор/хлориды (r = +0,4) и F/Ca (r = +0,37). Изучение нелинейной корреляции обнаружило два максимума частоты гипертрофии миндалин и аденоидов при концентрации фтора 0,25 и 0,55 мг/л, а также два минимума при 0,46 и 0,61 мг/л, как и в случае ряда прочих заболеваний. Обнаружены два максимума частоты гипертрофии миндалин и аденоидов при соотношении фтор/кальций (мг/мг-экв.) 0,08 и 0,14, а также минимум при 0,11, как и в случае ряда прочих заболеваний.

Нами не найдено линейной корреляции частоты бронхиальной астмы с содержанием фтора в питьевых водах (табл. 53), но обнаружена обратная линейная корреляция с отношением фтор/нитриты (r = -0,46) и прямая с отношением F/Ca (r = +0,37). Изучение нелинейной корреляции выявило два максимума частоты заболеваний бронхиальной астмы при концентрации фтора 0,27 и 0,55 мг/л, а также два минимума при 0,31 и 0,61 мг/л, как и в случае ряда прочих заболеваний .Обнаружен максимум частоты бронхиальной астмы при отношении фтор/кальций (мг/мг-экв.) 0,11, а также два минимума при 0,08 и 0,18, как и в случае ряда прочих заболеваний.

Выводы

Результаты исследований взаимосвязи заболеваний человека в зависимости от содержания фтора в питьевой воде показывают, что прямая линейная корреляция найдена в восьми случаях: с содержанием фтора в случае четырех болезней (из 36) – сахарного диабета, ревматизма, нефрита, эрозии шейки матки; с отношением фтор/сульфаты также в четырех случаях из 36 – цереброваскулярной болезни (с ГБ), всего класса болезней мочеполовой системы, женских половых органов, нервной системы и органов чувств.

С отношениями содержания фтора и хлоридов, нитритов, нитратов есть и прямые, и обратные связи.

С отношением фториды/хлориды – прямые в случаях (цереброваскулярная болезнь с ГБ, она же без ГБ, ревматизм, гастрит с дуоденитом, болезни женских половых органов, гипертрофия миндалин и аденоидов) и 1 обратная в случае суммы всех форм рака.

С отношением фториды/нитриты – прямые в 2 случаях (ИБС без ГБ, болезни костно-мышечной системы) и 2 обратные в случае эрозии шейки матки и бронхиальной астмы.

С отношением фтор/нитраты – 1 прямая в случае инфаркта миокарда и 4 обратных (в случае рака желудка, рака шейки матки, ревматизма, гастрита с дуоденитом).

С отношением фтор/щелочность линейной корреляции не найдено.

Таким образом, с содержанием фтора линейная корреляция частоты болезней найдена только в 4 случаях из 36, а с отношениями содержания фтора к содержанию хлоридов – в 7 случаях, нитратов – в 5, нитритов – в 4, сульфатов – в 4 случаях из 36.

Линейная корреляция с содержанием фтора и его отношением к содержанию сульфатов равнонаправлена (только прямая), а с отношениями содержания фтора и хлоридов, нитратов, нитритов – разнонаправлена.

Линейная корреляция с содержанием фтора найдена лишь в случае 4 заболеваний, а линейная корреляция частоты болезней с содержанием фтора и его отношениями к содержанию пяти других анионов в воде выявлена в 24 случаях из 216.

Результаты изучения линейной корреляции согласуются с литературными источниками, что отношения содержаний компонентов внешней среды нередко играют более существенную роль в их влиянии на живые организмы и часто в большом количестве случаев, нежели абсолютные количества компонентов.[15] Множественная линейная корреляция с отношениями компонентов среды частично объясняет противоречивость данных по линейной корреляции с абсолютными количествами компонентов.

Результаты исследования могут послужить базой для дальнейшего ведения мониторинга вод и здоровья населения, а также при экологических исследованиях на территориях, близких по ландшафтно-геохимическим условиям, к Окско-Донской низменности.